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1 Model equations

1.1 Approach for modeling the gas phase

The governing equations for low Mach number flow with combustion are based on those derived
in Rehm & Baum (1978), where it is assumed that pressure changes due to the fire or buoyancy
induced flow are a small fraction of the ambient pressure (i.e., the pressure in the absence of the
fire). The resulting equations are commonly known as a low Mach number approximation. Explicit
second order Runge–Kutta time stepping and second order spatial differencing on a rectilinear
grid is used. Additional details, especially of the numerical approach and boundary condition
implementation can be found in McGrattan (2004). Ideal gases and Fickian diffusion are assumed.
The equation for conservation of total mass is

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u. (1)

This equation requires the divergence of the velocity ∇·u. The determination of ∇·u is discussed
in Sec. 1.1.1.

The equation for conservation of momentum is

∂u

∂t
+∇H− u× ω =

1
ρ

[(ρ− ρ∞)g +∇ · τ − F D] , (2)

∇H =
1
2
∇|u|2 +

1
ρ
∇pd

∼= 1
2
∇|u|2 +

1
ρ∞

∇pd, (3)

τ = µLES

(
def u− 2

3
(∇ · u)I

)
. (4)

Here the vector identity (u·∇)u = (1/2)∇|u|2−u×ω is used and the deformation, or rate of strain,
tensor is def u = 0.5(∇u + (∇u)T) . Equation (3) implies that (1/ρ − 1/ρ∞)∇pd is negligible.
Physically this amounts to assuming that the baroclinic torque has a negligible contribution, relative
to buoyancy, to the generation of vorticity. With this assumption a constant coefficient PDE for the
pressure is formed by taking the divergence of the momentum equation [Eq.(2)]. This pressure PDE
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is solved in a computationally efficient and accurate manner using a direct solver. The baroclinic
torque is then approximately restored using the pressure from the previous time step (McGrattan
2004).

The influence of the grass fuel bed on the ambient wind flow is approximated by the drag term
F D in Eq. (2). This drag term is present only in the first gas-phase grid cell above the bottom
boundary, and is determined by

F D =
{

CD
3
8βsσsρ|u|u

[
1− 0.9 mf

s,pyr(t)
]
, 0 ≤ mf

s,pyr < 1,

CD
3
8βsσsρ|u|u [0.1], mf

s,pyr = 1,
(5)

where CD ≡ 1 is used which approximates a grass fuel element as a cylinder; βs is the packing ratio
of the solid fuel, σs is the surface to volume ratio of the solid fuel particles, and

mf
s,pyr(t) =

∫ t
0 ṁ′′

s,pyr(t
′)dt′

m′′
s (0)(1− χchar)

. (6)

Here ṁ′′
s,pyr is the rate of fuel gas generation due to pyrolysis of the vegetative solid, m′′

s is the mass
loading (mass per unit area) of the solid fuel bed, and χchar is the char fraction of the solid fuel.
Equation (6) is the fraction of fuel that has undergone pyrolysis. Similar expressions for the terms
not in the square brackets of Eq. (5) are used by Porterie et al. (2000) and Linn et al. (2002).
The term in the square brackets approximates the weakening drag of the grass on the air flow as it
burns away. For a given gas density and velocity field the drag of the fuel bed is reduced to 10% of
its original value at the end of burning. The vegetative fuel variables in Eq. (5) are discussed more
fully in Sec. 1.2. This is a simple, first–step, model for representing the drag of the fuel bed. This
approach is more explicit than the traditional boundary-layer meteorology method of treating the
fuel as a zero-depth, constant friction surface of a particular roughness length based on the wind.
It has the advantage of simplicity, a direct relationship to commonly measured fuel properties that
are used in the fuel model, and varies with fuel consumption. How well it captures the influence of
drag over a range of conditions is the subject of future research.

The computational grids used for the large fire simulations conducted here are too coarse to
capture molecular transport physics. Instead an approximation to these subgrid processes using
quantities resolved on the computational grid must be made. One approach to doing this is called
called large eddy simulations (LES), a variant of which is used here. Following Smagorinsky (1963)
a subgrid scale model for the dynamic viscosity in the viscous stress tensor is used, where

µLES = ρ(C∆)2
(

2(def u) · (def u)− 2
3
(∇ · u)2

) 1
2

. (7)

Here C is an empirical constant (Smagorinsky constant), ∆ is a length on the order of the grid
cell size, and the deformation term is related to the dissipation function (the rate at which kinetic
energy is converted to thermal energy). The thermal conductivity and material diffusivity are
related to turbulent viscosity µLES by

λLES =
µLEScp,N2

Pr
and (ρD)LES =

µLES

Sc
. (8)

The Prandtl and Schmidt numbers, Pr and Sc, are constant. Values of C, Pr, and Sc were obtained
by comparing numerical simulations and laboratory experiments C = 0.2, Pr = Sc = 0.5 (McGrattan
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2004). The equation for the conservation of species is

ρ
∂Yi

∂t
+ ρu · ∇Yi = ∇ · {(ρD)LES∇Yi}+ ṁ′′′

i . (9)

The equation of state is

po = RρT
∑

i

Yi/Mi = RρT/M. (10)

The equation for conservation of energy is

ρ
∂h

∂t
+ ρu · ∇h = ∇ · (λLES∇T ) +∇ ·

(∑

i

hi(ρD)LES∇Yi

)
−∇ · q̇′′r +

dpo

dt
. (11)

Note that the WFDS simulations conducted here are not in a sealed enclosure, and therefore
dpo/dt = 0. The energy release associated with chemical reactions is not explicitly present but is
accounted for by h (Rosner 2000), see their Eq.[13]). Here

h(x, t) =
∑

i

Yi(x, t)hi(T ) and hi(T ) = ho
i +

∫ T

T o

cp,i(T ′)dT ′ (12)

are the enthalpy of the mixture and of species i, respectively. The temperature only dependence of
the enthalpy of ideal gases is used. Note that cp =

∑
i Yidhi/dT is the mixture specific heat.

The molar heat of combustion for a given chemical reaction at constant pressure is

∆h̄c = −
∑

i

νih̄i(T ) = −
∑

i

νihi(T )Mi. (13)

The simplified stoichiometric relation

C3.4H6.2O2.5 + 3.7 (O2 + 3.76 N2) → 3.4 CO2 + 3.1 H2O + 13.91 N2 (14)

is used to model the chemical reaction of air and fuel gases generated by wood pyrolysis (Ritchie et
al. 1997). The mass consumption rate term for any of the species (except N2 which is chemically
inactive) can be written in terms of a specific one. Thus in terms of the fuel mass consumption
rate,

ṁ′′′
i = riṁ

′′′
F , ri =

(νM)i

(νM)F
, νF = −1, νO2 = −3.7, νCO2 = 3.4, νH2O = 3.1. (15)

With this expression the heat release per unit volume rate of the combustion process can be
represented in terms of the heat of combustion:

Q̇′′′
c = −

∑

i

hiṁ
′′′
i = − ṁ′′′

F

(νM)F

∑

i

νihiMi =
ṁ′′′

F

(νM)F
∆h̄c = −ṁ′′′

F ∆hc. (16)

Here ∆hc = ∆h̄c/MF is the mass based heat of combustion and the fact that νF ≡ −1 is used.
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1.1.1 Divergence constraint

The divergence of the velocity is required in the conservation equation for total mass, Eq. (1). A
general divergence constraint on the velocity can be derived by taking the material (or Lagrangian)
derivative of the equation of state

ṗo =
RT

M

Dρ

Dt
+
Rρ

M

DT

Dt
+RρT

∑

i

1
Mi

DYi

Dt
(17)

and using Eqs. (1), (9), DT/Dt from Dh/Dt where h is expressed in Eq. (12), and Eq. (11):

∇ · u =
1

ρcpT

(
∇ · (λLES∇T ) +

∑

i

(ρD)LES∇Yi · ∇hi −∇ · q̇′′r
)

+
1
ρ

∑

i

M

Mi
∇ · {(ρD)LES∇Yi}+

1
ρ

∑

i

(
M

Mi
− hi

cpT

)
ṁ′′′

i . (18)

A similar expression for the divergence constraint was used in simulations by Bell et al. (2000) of
vortex flame interaction neglecting thermal radiation. Equation (18) can be simplified using the
assumption that the ratio of specific heats, γ, for each species is equal to the value for diatomic
gases, or

γi =
c̄p,i

c̄v,i
=

cp,i

cv,i
= γ = 7/5 ⇒ c̄p,i = c̄p, c̄v,i = c̄v constant. (19)

The basis for this assumption is that nitrogen is the dominant species in the gas mixture. The
implication that the molar specific heats are constant follows from c̄p,i − c̄v,i = R. With this
assumption the divergence constraint can be written

∇ · u =
1

ρcpT

(
∇ · (λLES∇T ) +

∑

i

cp,i∇ · {T (ρD)LES∇Yi} − ∇ · q̇′′r
)

+
1
ρ

∑

i

(
M

Mi
− hi

cpT

)
ṁ′′′

i , (20)

where the relation

cp,i =
R
Mi

γ

γ − 1
= constant, cp =

∑

i

Yicp,i =
R
M

γ

γ − 1
⇒ M

Mi
=

cp,i

cp
(21)

is used to combine the two diffusion terms in Eq. (18). Note that the specific heats are independent
of temperature but do depend on the molecular weight of the gas species.

In each form of the divergence constraint the mass consumption terms are, using Eqs. (15) and
(16),

1
ρ

∑

i

(
M

Mi
− hi

cpT

)
ṁ′′′

i =
1
ρ

(
M

∑
i νi

νFMF
− ∆hc

cpT

)
ṁ′′′

F =
M

∑
i νi

ρνFMF
ṁ′′′

F +
1

ρcpT
Q̇′′′

c , (22)

where Q̇′′′
c is the chemical heat release per unit volume given in Eq. (16). An order of magnitude

analysis shows that the first term on the right-hand-side can be neglected for the complex hydro-
carbon fuel gases and is not included in the numerical implementation of WFDS. To determine the
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the chemical heat release rate per unit volume, Eq. (16), the combustion process must be modeled.
This model provides the fuel mass consumption term ṁ′′′

F and is discussed next.

1.1.2 Mixture fraction based combustion model

Even when available, models of detailed chemical kinetics are too computationally expensive to
implement in simulations of the scale we are interested in. Instead, we adopt the commonly used
mixture fraction based fast chemistry or flame sheet model (Bilger 1980). In this model it is
assumed that the time scale of chemical reactions is much shorter than that of mixing (i.e., “mixed
is burnt”). The mixture fraction, Z, is defined as:

Z ≡ rO2YF − (YO2 − Y ∞
O2

)
rO2Y

∞
F + Y ∞

O2

, 0 ≤ Z ≤ 1, (23)

where the dependence of YF and YO2 on Z can be easily determined by applying the flame sheet
assumption, YFYO2 = 0. Here Y ∞

F is the fuel mass fraction in the fuel stream, Y ∞
O2

is the oxygen
mass fraction in the ambient atmosphere, and rO2 is defined in Eq. (15). If the fuel and oxygen
are in stoichiometric proportions, rO2YF = YO2 , and they are each completely consumed by the
chemical reaction where

Z = Zst = Y ∞
O2

/(rO2Y
∞
F + Y ∞

O2
) (24)

is the location of the flame sheet or combustion zone.
With this combustion model the chemical reaction occurs solely as the result of fuel and oxygen

mixing in stoichiometric proportion and so is independent of temperature. In reality chemical
reactions are dependent on temperature. However, the computational grids used here are much too
coarse (O(1 m)) to resolve the combustion zone (O(1 mm)). Thus, in a WFDS simulation the heat
released by the combustion process is deposited in computational grid cell volumes that are much
larger than volumes occupied by actual combustion zones. For this reason flame temperatures can
not be reached and Arrhenius type reaction models that require a resolved temperature field can
not be directly used. An alternative is presented below.

The conservation equation for Z is obtained by combining the conservation equations for YF and
YO2 according to Eq. (23) and using Eq. (15):

∂ρZ

∂t
+ u · ∇(ρZ) = −ρZ∇ · u +∇ · {(ρD)LES∇Z}. (25)

With this equation, Eq. (15), and zero boundary conditions (at Z = 0, 1) the dependence of YCO2

and YH2O on Z can be determined. The divergence constraint is

∇ · u =
1

ρcpT

(
∇ · (λLES∇T )−

∑

i

Y ′
i cp,i∇ · (TρD∇Z)−∇ · q̇′′r + Q̇′′′

c

)
, (26)

where Eq. (16) is used for Q̇′′′
c . In the context of the mixture fraction combustion model, the fuel

mass consumption term is

ṁ′′′
F = Y ′

F∇ · (ρD∇Z)−∇ · (Y ′
FρD∇Z) = −Y ′′

F ρD|∇Z|2. (27)

The numerical implementation of this expression is problematic because Y ′
F = dYF/dZ is discon-

tinuous. Instead an expression for the mass consumption per unit area of flame sheet, which can
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be derived via a line integral through the flame sheet, is used. For example, for oxygen

ṁ′′
O2

= −Y ′
O2
|Z≤Zst(ρD|∇Z|)|Z=Zst =

(νM)O2

(νM)F
ṁ′′

F, (28)

which implies, using Eq. (16), that the local chemical heat release per unit area of flame sheet is

Q̇′′
c = −∆hc

(νM)F
(νM)O2

Y ′
O|Z≤Zst(ρD|∇Z|)|Z=Zst . (29)

This expression is used to determine Q̇′′′
c at locations corresponding to the flame sheet. The value

of the heat of combustion per kg of gaseous fuel is ∆hc = 15600 kJ kg−1. This is a representative
value for a range of grasses reported in Hough (1969) and Susott (1982).

It can be shown that the summation of Eq. (29) along the flame sheet is consistent with the
total heat released by the complete combustion of the fuel gas generated by pyrolysis (i.e., arising
from the fuel bed) (McGrattan 2004). This very important constraint ensures that the convective
and radiative heat transported to the vegetative fuel and to surrounding soot laden gases are
consistently coupled to the pyrolysis of the solid fuel. The assumption of complete consumption of
the fuel gases is valid only if a sufficient amount of oxygen is present in the volume surrounding the
fire. For fire plumes in unbounded domains this is a reasonable assumption. Similar considerations
are required for radiative emission as discussed below.

1.1.3 Thermal radiation transport

The radiation transport equation (RTE) for an absorbing-emitting, non-scattering gas is

ŝ · ∇Iλ(x, ŝ) = κλ(x)[Ib,λ(x)− Iλ(x, ŝ)]. (30)

Note that the dependence of the intensity, I, on the frequency of the radiation, λ, is due to the
spectral (frequency) dependence of the absorption coefficient κλ. However, fires from vegetative
fuels are heavily soot laden. Since the radiation spectrum of soot is continuous, it is assumed that
the gas behaves as a spectrally independent or gray medium. This results in a significant reduction
in computational expense. The spectral dependence is therefore combined into one absorption
coefficient, κ, and the emission term is given by the blackbody radiation intensity

Ib(x) = σT 4(x)/π. (31)

A table containing the values of κ as function of mixture fraction and temperature for a given
mixture of participating gaseous species (H2O, CO2) and soot particulate is computed before the
simulation begins. A soot evolution model is not used. Instead, the mass of soot generated locally
is an assumed fraction, χs, of the mass of fuel gas consumed by the combustion process. In the
WFDS simulations reported here, χs = 0.02 is used. Values of χs for Douglas fir range from less
than 0.01 to 0.025 under flaming conditions (Bankston et al. 1981).

Integrating the spectrally independent form of Eq. (30) over all solid angles gives the equation
for conservation of radiant energy,

∇ · q̇′′r (x) = κ(x)[4πIb(x)− U(x)], (32)

where U is the integrated radiation intensity. This equation states that the net radiant energy lost
in a unit volume per unit time is the difference between the emitted and absorbed radiant energy.
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The divergence of the radiation flux in Eq. (32) is required in the energy equation, Eq. (11), and
in the divergence of the velocity, which is used in the numerical solution procedure, Eq. (26).

As was discussed above, the spatial resolution in the large scale WFDS simulations conducted
here is insufficient to resolve the combustion zone. As a result, local gas temperatures on the
computational grid in the flame zone region are significantly lower than actual flame temperatures.
This requires special treatment of the radiation emission term κIb in the flame region since it
depends on the fourth power of the local temperature. In regions where the temperature is lower
and spatial gradients are not so under predicted, the numerical temperatures are more realistic.
For this reason the emission term is modeled as

κIb =
{

κσT 4/π, outside the flame zone
χrQ̇

′′′
c , inside the flame zone

(33)

where χr is the fraction of the chemical heat release rate per unit volume that is radiated to the
local volume surrounding the flame region. Note that some of this radiation will be absorbed by the
surrounding soot. As a result, for the fire as a whole, the fraction of chemical heat release radiated
to a location outside the smoke plume will be smaller than the local value. For hydrocarbon pool
fires the local value is χr

∼= 0.30 to 0.35 while the global value is less, 0.10 (Koseki & Mulhooand
1991). In wood cribs χr

∼= 0.20 to 0.40 (Quintiere 1997). The value used in the simulations is
χr = 0.35.

An earlier implementation of the simulation code used the P1 approximation form of the RTE
(Baum & Mell 1998)Ṫhe P1 approximation was also used by (Porterie et al. 1998) in the first
stages of their two-dimensional model for fire spread through a pine needle bed and by Grishin
(1996). The P1 approximation is accurate only when the absorption coefficient of the gases is
sufficiently large. Since radiation transport through air, which is optically thin, to the vegetative
fuel is an important contribution to the net heat flux on the vegetation ahead of the fire, the P1
approximation is not appropriate in general. For this reason a finite volume method based on that
of Raithby & Chui (1990) is used to solve the gray gas form of Eq. (30). It requires approximately
20% of the total CPU time. The spatial discretization of the RTE is the same as that used in
the other gas phase conservation equations. The details of the implementation of this approach,
including boundary conditions for open and solid boundaries, are in McGrattan (2004).

The set of gas phase conservation equations solved in the simulation consists of the conservation
of total mass Eq. (1), the momentum Eq. (2), the mixture fraction Eq. (25), the divergence of the
velocity Eq. (26), and the gray gas form of Eq. (30). The equation of state, Eq. (10), is used to
obtain the temperature field. In addition, an equation for the pressure field, obtained by taking
the divergence of the momentum equation, is solved using a fast direct solver.

1.2 Approach for modeling the solid fuel

The decomposition of a vegetative fuel subjected to a sufficiently high heat flux is a complex
process occurring through two general steps: evaporation of moisture and then pyrolysis of the
solid. During pyrolysis, chemical decomposition occurs forming char and volatiles that pass out of
the solid fuel into the surrounding gas. The above processes are all endothermic. The exothermic
process of char oxidation can occur if oxygen is present at a sufficiently hot char surface. If the
combustible pyrolysis volatiles mix with enough ambient oxygen at high enough temperatures, then
flame ignition occurs. As discussed in the previous section, the combustion model used here assumes
that ignition occurs when fuel gas and oxygen mix in stoichiometric proportion, independent of the
gas temperature.

Many models of the thermal and mass transport and the kinetics of chemical decomposition for
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wood subjected to a prescribed heat flux have been developed. Mostly these models are thermally
thick and vary according to how they approximate the anisotropy of the wood material, moisture
content, wood constituents, physics of heat and mass transport, and the chemical kinetics of py-
rolysis and char oxidation. Reviews of these models can be found in DiBlasi (1993) and Atreya
(1983). More recently three–dimensional models have been used (e.g., Yuen et al. 1997). Numerous
thermally thin models for the pyrolysis of cellulose and subsequent flame spread also exist (e.g.,
Mell et al. 2000; Porterie et al. 2000).

In all of the above studies either the external heat flux was prescribed or the flame was simulated
on a sufficiently fine computational grid that the flame’s temperature/structure was well resolved.
In the modeling approach taken here the grassland fuel bed is assumed to be comprised of uni-
formly distributed, non-scattering, perfectly absorbing, thermally thin fuel particles of density ρs

and surface-to-volume ratio σs. The thermally thin assumption is commonly used in fire models
involving fine wildland fuels (grass and foliage of shrubs and trees) (Rothermel 1972). Note that an
emissivity of 0.9 is characteristic of wildland vegetation (Jarvis et al. 1976) so the assumption that
a fuel element is a perfect absorber is a reasonable one. The bulk density of the fuel bed is ρsb and
the fraction of the fuel bed volume occupied by the fuel particles, or packing ratio, is β = ρsb/ρs.
The temperature evolution equation of the solid fuel in a vegetative fuel bed with these properties
is (following Morvan & Dupuy 2004)

βsρscp,s
∂

∂t
Ts(x, y, z, t) = −∇ · q̇′′sr −∇ · q̇′′sc − Q̇′′′

s,vap − Q̇′′′
s,kin. (34)

Here ∇ · q̇′′sr and ∇ · q̇′′sc are the divergences of the thermal radiation (spectrally integrated) and
conductive heat fluxes on the solid fuel elements within the bulk vegetative fuel bed; Q̇′′′

s,vap con-
tains the endothermic effect of vaporization of moisture; Q̇′′′

s,kin contains the contribution of heats
(endothermic and exothermic) associated with the thermal degradation of the solid (e.g., pyrolysis,
char oxidation); cp,s is the specific heat of the fuel particle, which can contain moisture. This
equation, without Q̇′′′

s,kin, was also used by Albini (1985, 1986).
The radiative heat flux can be found by solving the thermal radiation heat transfer equation,

Eq. (30), (or an approximation to it, as is done below) in the fuel bed. This requires the absorption
coefficient, κs, of the bulk fuel bed which can be related to field measurements of the average
surface-to-volume ratio and the packing ratio of the fuel particles (NAS 1961),

κs =
1
4
βsσs =

1
4

wsσs

ρshs
, (35)

where ws is the fuel bed loading and hs is the fuel bed height. This expression for the absorption
coefficient has been used in other fire spread models (Albini 1985, 1986; DeMestre et al. 1989;
Morvan & Larini 2001; Morvan & Dupuy 2001) and has been experimentally validated for vegetative
fuels (Butler 1993).

The bulk conductive heat flux term in Eq.(34) is approximated by the volume-averaged sum of
the local flux on the surface of individual fuel particles. For a representative volume V containing
Np fuel particles

∇ · q̇′′sc ∼=
∑N

i=1

∫
q̇′′sc,p · n̂ dSp,i

V
∼= q̇′′sc,pNpSp

V
=

NpSp

NpVp

NpVp

V
q̇′′sc,p = σsβs q̇′′sc,p, (36)

where Sp, Vp and q̇′′sc,p are the surface area, volume, and net surface conductive heat flux associated
with a representative fuel particle, respectively. The conductive heat flux is assumed to be uniform
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across the surface of the fuel particle which is consistent with the assumption that the particle is
thermally thin and surrounded by gas of constant temperature Tg.

Model Eqs. (34), (35) and (36) have been used to predict heat transfer in two-dimensional
vegetative fuel beds by Albini (1986) to obtain steady-state fire spread rates (Q̇′′′

s,kin ≡ 0). These
equations along with a model for thermal degradation (to determine Q̇′′′

s,kin) have also been used
in the two-dimensional simulation of Morvan & Dupuy (2004) (and their earlier work). Morvan &
Dupuy solve the governing equations for the solid fuel and gas phase on the same computational
grid with a cell size of 10 mm in the pyrolysis zone. This is not possible in the present study since
the gas phase cells are O(1) m. Instead, the fuel bed is given its own uniform computational grid
on which Eq. (34) is solved (see Fig. 20). Within the gas phase computational grid the fuel bed
is present as a momentum drag only. Thermal and mass flux interaction of the gas and vegetative
grids occurs at the gas/vegetation boundary, (xΓ, yΓ, 0) in gas phase coordinates. The temperature
of the solid fuel in the vegetative fuel bed is assumed to depend on the vertical coordinate only,
Ts(xs, ys, zs, t) = Ts(xΓ, yΓ, zs, t) beneath each gas phase grid cell along the gas/vegetation boundary.
The resolution of the grid used for the vegetation is ∆zs ≤ (3κs)−1, is based on the optical depth
of the fuel bed, κs

−1 (Morvan & Larini 2001). Initially, the number of layers spanning the height
of the fuel bed is NL = hs∆zs

−1. The grassland fuel bed is assumed to burn from the top down
causing the total number of layers to decrease with time. It should be noted that this assumption
of top down burning is more consistent with field observations of head fires, which spread with the
ambient wind, as opposed to fire spread either into the wind (backing fire) or across the ambient
wind (flanking fire). As the fuel bed burns away, the term in the square brackets in Eq. (5) decreases
in magnitude (i.e., the influence of drag decreases).

It is assumed that radiation within the fuel bed is spectrally independent and travels in only
two directions, either downward or upward. This is commonly called the forward-reverse radiation
transfer model (Ozisk 1973; Mell & Lawson 2000)). The net radiative flux within the fuel bed has
contributions from the downward radiative flux due to the fire, incident on the top of fuel bed (q̇′′,−sr,i ,
see Fig. 20) and from the radiative flux due to local self emission (integrals in Eq. (37) below).
With these assumptions the net radiative flux at a nondimensional distance ηs = κszs from the top
of the fuel bed is:

q̇′′sr(ηs) = q̇′′+r + q̇′′−r

= q̇′′+sr,i exp(−[ηs,h − ηs]) + σ

∫ ηs,h

ηs

T 4
s exp(−[η′s − ηs])dη′s

−q̇′′−sr,i exp(−ηs)− σ

∫ ηs

0
T 4

s exp(−[ηs − η′s])dη′s, (37)

where ηs,h = κshs. The net radiative flux on the bottom boundary of the fuel bed is assumed to
be zero (this defines q̇′′+sr,i). This radiation boundary assumption was also made by Albini (1986)
for fire spread through surface fuels where the bottom boundary is soil. The radiation transfer
computation in the gas phase provides q̇′′−sr,i.

With the above assumptions, integrating Eq. (34) over a control volume dxΓdyΓdzs centered at
zs,n, the center of the nth cell in the solid fuel’s computational grid (see Fig. 20), gives

[m′′
s cp,s

∂Ts

∂t
]n = −[q̇′′sr(η

+
s ) · n̂+ + q̇′′sr(η

−
s ) · n̂−]n − [σsβs q̇′′sc,p + Q̇′′′

s,vap + Q̇′′′
s,kin]n ∆zs

= [q̇′′s,net]n − [Q̇′′′
s,vap + Q̇′′′

s,kin]n ∆zs. (38)
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Here

[q̇′′s,net]n = −q̇′′sr(η
+
s,n) · n̂+ − q̇′′sr(η

−
s,n) · n̂− − σsβsq̇

′′
sc,p∆zs = q̇′′sr,net,n + q̇′′sc,net,n (39)

is the net heat flux on the bulk solid fuel; η−s,n and η+
s,n are the locations of the lower and upper

horizontal faces, respectively, of the nth grid cell; and n̂+, n̂− are the outward facing normals on
these faces. All other quantities are cell-centered. It is assumed that the rate at which thermal
energy is stored in the control volume, the right-hand-side of Eq. (38), and the heat sinks and sources
associated with vaporization and thermal degradation, are constant throughout the cell volume.
Values of q̇′′sr,net,1 and q̇′′sc,net,1 versus time were plotted previously on Fig. 2). In general, the solid
fuel mass per area in grid cell n, [m′′

s ]n, is composed of dry virgin vegetative fuel and moisture
m′′

s = m′′
s,v + m′′

s,m. Initially [m′′
s,v(t = 0)]n = ws∆zs/hs and [m′′

s,m(t = 0)]n = M [m′′
s,v(t = 0)]n

where M is the moisture fraction. M is defined to be the mass of initial moisture in a fuel particle
divided by its mass when dry. The specific heat of the fuel particle has, in general, contributions
from moisture and vegetation (Porterie et al. 1998):

cp,s =
m′′

s,vcp,v + m′′
s,mcp,m

m′′
s

, (40)

where cp,v (which depends on Ts) and cp,m are given in Table 1.
The conductive heat flux on the surface of a fuel particle, q̇′′sc,p, in Eq. (39) is determined using

a convective heat transfer coefficient, hc, for a vertical cylinder (Holman 1981), and is defined by

q̇′′sc,p = hc(Ts − Tg), hc = 1.42(|Ts − Tg|/∆zs)1/4. (41)

Tg is the temperature in the bottom gas phase grid cell bordering the fuel bed, and ∆zs is the
length of the cylinder in the nth fuel layer.

The temperature equation, Eq. (38), for the fuel bed is solved assuming a two stage endothermic
decomposition process (water evaporation followed by solid fuel pyrolysis). At this stage in the
model development char oxidation is not accounted for, and Q̇′′′

s,kin = Q̇′′′
s,pyr. In a given fuel layer

the virgin fuel dries and then undergoes pyrolysis until the solid mass remaining equals χcharws/NL

where χchar is the char fraction of the solid fuel and NL equals the original number of layers in the
fuel model (see Fig. 20). A char mass fraction of χchar = 0.2 was used based on measurements of
grass fuels by Susott (1982).

Moisture is removed in a manner similar to previous models (Albini 1985; DeMestre et al. 1989;
Margerit & Sero-Guillaume 2002; Morvan & Dupuy 2004). The temperature of the vegetative fuel
bed evolves according to Eq. (38). Once Ts reaches boiling temperature, Tb, it is assumed that
drying requires all of the available heat so that Ts = Tb until all the moisture has evaporated. With
these assumptions the drying stage of fuel decomposition is modeled as:

Q̇′′′
s,vap = ṁ′′

s,m∆hvap/∆zs,

ṁ′′
s,m =

{
0, Ts < Tb,

q̇′′s,net/∆hvap, Ts = Tb, m′′
s,m > 0, q̇′′s,net > 0,

Q̇′′′
s,pyr = 0. (42)

After all the moisture is boiled off, the temperature of the fuel bed is free to change according to
Eq. (38) with m′′

s,m = 0. With a net influx of heat, Ts continues to rise, eventually reaching a point
Ts = Tpyr, where pyrolysis begins and Q̇′′′

s,pyr 6= 0.
This is as far as the physics-based fire/fuel spread models such as Albini (1985) and DeMestre
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et al. (1989) go since the incident heat flux from the fire is assumed, allowing the steady-state fire
spread rate to be determined based on how long it takes Ts to reach Tpyr. In our case, however, the
computer simulation supplies the time-dependent heat flux based on the behavior of the simulated
fire, which drives the pyrolysis of the solid fuel and determines ṁ′′

s,pyr, the rate at which fuel gas
is generated. Physics-based computer simulation approaches of fire spread in vegetative fuels that
have well resolved gas phase flames, such as Porterie et al. (1998) and Morvan & Larini (2001),
use temperature dependent Arrhenius kinetics for pyrolysis and char oxidation. More recently
(Morvan & Dupuy 2004) found that a simple temperature dependent pyrolysis mass loss rate was as
accurate as a more complicated Arrhenius expression. The model for solid fuel thermal degradation
used here uses the temperature dependent mass loss rate expression in (Morvan & Dupuy 2004).
This pyrolysis model was based on thermogravimetric analysis of number of vegetation species
(Dimitrakipoulos 2001; Moro 1997). Since char oxidation is not modeled the smoldering or glowing
combustion in the grass, after the fire front has passed, is not present. Thus, in the simulations
reported here the pyrolysis stage of decomposition is (Morvan & Dupuy 2004):

Q̇′′′
s,vap = 0,

Q̇′′′
s,pyr = ṁ′′

s,pyr∆hpyr/∆zs

ṁ′′
s,pyr =





0, Ts < 127 C,(
q̇′′s,net/∆hpyr

)
(Ts − 127)/100, 127 C ≤ Ts ≤ 227 C, q̇′′s,net, > 0,

and m′′
s > χcharws.

(43)

The heat of pyrolysis, ∆hpyr, is 416 kJ kg−1 (Morvan & Dupuy 2004). When the mass loss, in the
nth solid phase cell, is such that m′′

s,n = χcharws/NL = m′′′
char,n then the fuel in that layer is assumed

to be consumed and it is removed from the solid fuel model.
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Figure 20: This figure summarizes the solid phase model. The vegetative fuel is characterized by its
bulk density, ρsb, the fuel particle density, ρs, the surface-to-volume ratio of the fuel particles, σs, and the
height of the bulk fuel, hs. The fuel bed is divided into NL layers and the evolution equations governing
the heat up, drying, and pyrolysis of the vegetative fuel are solved within each layer as described in the
text.
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2 Nomenclature

Variable Units Description

cp kJ kg−1K−1 specific heat at constant pressure
cp,i kJ kg−1K−1 specific heat of species i at constant pressure
c̄v,i kJ/kmole·K molar specific heat of species i at constant volume
D m2 s−1 mass diffusivity
d m depth of head fire
dig m depth of ignition fire-line
g m/s2 ambient acceleration vector
H m2/s2 modified pressure term in momentum equation
h =

∑
i Yihi kJ/kg mixture enthalpy

hb m height of bulk vegetative fuel
hi kJ/kg specific enthalpy of species i
h̄i = hiMi kJ/kmole molar specific enthalpy of species i
hs m height of solid fuel
I - identity matrix
Iλ(x, ŝ) W·MHz/m2 · sr spectral radiation intensity
Ib(x, ŝ) W·MHz/m2 · sr blackbody radiation intensity
Lig m length of ignition line
ṁ′′

s,pyr kg/m2·s mass flux of fuel gas due to pyrolysis of vegetative solid fuel
ṁ′′′

i kg/s ·m3 chemical mass consumption of gas species i
˙s,m′′

m,e kg/m2·s mass flux of water vapor from vegetative fuel element during drying
M - fuel moisture content as fraction of oven dried fuel mass
Mi kg/kmole molecular weight of gas species i
M = (

∑
i Yi/Mi)−1 kg/kmole average molecular weight of gas mixture

n̂ - unit normal vector
Q̇′′′

c kW/m3 heat release rate per unit volume due to chemical reactions
pd Pa dynamic pressure
po Pa a thermodynamic pressure
R = 8.314 kJ kmole−1K−1 universal gas constant
Ro m s−1 experimentally observed head fire spread rate
Rs m s−1 empirically derived potential quasi-steady head fire spread rate
q̇′′ kW m−2 magnitude of heat flux
q̇′′ kW m−2 heat flux vector
ŝ - unit vector in direction of radiation intensity
T ◦C temperature
u m s−1 velocity vector
ws kg m−2 vegetative fuel loading
U W m−2 integrated radiation intensity
U2 m s−1 wind speed in direction of spread at 2 m above ground
x m position vector
W m width of head fire
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Yi = ρi/ρ - local mass fraction of species i
Y ∞

F - mass fraction of fuel in fuel stream
Y ∞

O2
- mass fraction of oxygen in oxidant

Z - local mixture fraction
Zst - stoichiometric value of the mixture fraction

β - packing ratio, ρb/ρe

γi = cp,i/cv,i - ratio of species i specific heats
∆h̄c kJ/kmole molar based heat of combustion
ηs = κszs - nondimensional distance from top of fuel bed
∆hc kJ/kg mass based heat of combustion
∆hvap kJ/kg heat of vaporization of water
∆hp kJ/kg heat of pyrolysis of vegetative fuel
∆x,∆y, ∆z m length of computational cell in x, y, z directions
σs m−1 surface-to-volume ratio of fuel elements
σ 5.67× 10−11 kWm−2K−4 Stefan-Boltzmann constant
λ µm wavelength of radiation, or
λ W/m·K thermal conductivity of the gaseous mixture
µ kg /m· s dynamic viscosity of the gaseous mixture
νi - stoichiometric coefficient of species i
ρ kg/m3 total density of gas
ρsb kg/m3 bulk density of solid fuel
ρs kg/m3 fuel particle density
τ kg/m · s2 viscous stress tensor
χchar - fraction of virgin solid fuel converted to char
χr - fraction of local chemical heat release radiated

to surroundings
χs - fraction of consumed fuel mass converted to soot

13



Subscripts

a ambient
b boiling or bulk vegetative fuel quantity
c convective
i incident flux on boundary
ig ignition
i gaseous species
g gas phase
m moisture
net net quantity
o outward flux at boundary or observed value
r radiative
s solid (vegetative) fuel
v virgin dry vegetation
F fuel species
LES value used in large eddy simulation
O2 oxygen species
λ spectral dependence

Superscripts

′ derivative with respect to mixture fraction, ( )′ = d( )/dZ
T transpose
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